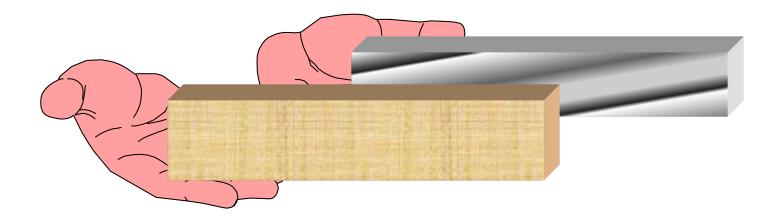
Heat Capacity

Touch each object. What do you notice?

Table top -wood
Warman
25°C

Table leg



Why does metal feel colder than wood, if they are both at the same temperature?

Metal is a good heat conductor:

- 1. Easy to transfer heat to it (from fingertips)
- 2. Holds heat for a short time

Wood is a good <u>insulator</u> and heat from fingertips moves slowly to the wood... so the wood feels warmer than the metal.

 Another example: you will possibly have noticed that it is easier to warm up a saucepan full of oil than it is to warm up one full of water

 So what affects the amount of heat required to warm up a substance?

Quantity of Heat

- Amount of heat needed to change temperature of a substance depends on:
 - **1. How much temperature will change**
 - 2. Quantity of substance
 - **3. Nature of substance**

Heat Capacity

- Describes how easy it is to heat up a substance, and how long it takes to cool
- Unique to each substance
- Physical property of a substance
- Think: why do Toronto and Vancouver have warmer winters than Regina?

Heat Capacity

The amount of heat (Q) transferred (-) or absorbed (+) by a substance depends on

- Mass of substance (m)
- Specific heat capacity (C)
- Change in temperature (ΔT)

$Q = mC\Delta T$ Unit of Heat: J = Joule

Specific Heat Capacity

- <u>Specific Heat Capacity (C)</u> of a substance is the amount of heat required to raise the temperature of 1 g of the substance by 1°C (or by 1 K).
- <u>Units</u> are J °C⁻¹ g⁻¹ or J K⁻¹ g⁻¹
- Sometimes the mass is expressed in kg so the units could also be J °C⁻¹/_Kg⁻¹ or J K⁻¹ kg⁻¹

 Approximate values in J K⁻¹ kg⁻¹ of the Specific Heat Capacities of some substances are:

Air	1000	Lead	125
Aluminum	900	Mercury	14
Asbestos	840	Nylon	1700
Brass	400	Paraffin	2100
Brick	750	Platinum	135
Concrete	3300	Polythene	2200
Cork	2000	Polystyrene	1300
Glass	600	Rubber	1600
Gold	130	Silver	235
lce	2100	Steel	450
Iron	500	Water	4200

How much energy would be needed to heat 450 g of copper metal from a temperature of 25.0°C to a temperature of 75.0°C? The specific heat of copper, C, at 25.0°C is 0.385 J g⁻¹ °C) It takes 132 J of energy to heat a sample of iron from 12.3°C to 33.9°C. What is the mass of the iron sample?

 6×1

17

A 3.50 g sample of pure gold releases 33.1 J of heat. Its initial temperature was 78.2°C. What is the final temperature of the sample? 733°(+78.2 \leq

152.4 mL of ethanol is cooled from 60.0°C to 43.7°C. The density of ethanol is 0.789 g/mL. How much energy is transferred?