

Kinetic Theory of Matter

- 1. All matter is composed of small particles (atoms, molecules, or ions).
- 2. They are in <u>constant</u>, random motion.
- 3. These molecules <u>constantly collide</u> with each other and their surroundings.

2

Forces of Attraction

According to the kinetic theory of matter, the state (phase) of a substance is determined by the interplay of two opposing forces within a substance.

Kinetic energy pulls particles apart while forces of attraction hold them together.

3

States of Matter

States of matter: solid, liquid and gas.

Whether a substance is a solid, liquid or gas depends on the kinetic energy (KE) and the atomic forces of attraction holding the particles together.

4

Solids

Low kinetic energy
Particles are close
Vibrate
Fixed shape

5

Liquids

Higher kinetic energy
Particles are farther apart
Collide and move around
Fixed volume not shape

6

Gases

High kinetic energy
Particles are far apart
No fixed shape or volume

7

7

Thermal Energy

The specific form of Kinetic Energy (KE) concerning Kinetic Theory of Matter is **Thermal Energy E**_{th}.

 E_{th} = # of particles × KE

8

Q

Temperature

Definition: is a <u>measure</u> of the average kinetic energy of the particles of a substances.

Hot objects: higher ave KE, higher temperature

Cold objects: lower ave KE, lower temperature

9

9

Heat

Heat is the TRANSFER of thermal energy.

Heat: $Q = \Delta E_{Th}$

10

Temperature Scales

Kelvin: K

Celsius: °C

Fahrenheit: °F

Boiling Point of Water	373K	100°C	212°F
Freezing Point of Water	273 K	0°C	32 °F
Absolute Zero	ОК	-273 °C	-460°F
	K	oc) PF

15

15

Temperature Scales

$$^{\circ}C = (^{\circ}F - 32) \times 5/9 - \text{What is } 72^{\circ}F?$$

$$K = {}^{\circ}C + 273 - \text{What is } 100^{\circ}C?$$

$$^{\circ}F = ^{\circ}C \times 9/5 + 32 - \text{What is 0°C?}$$