Unit 1: Heat Kinetic Theory of Matter

1

$\frac{\text { Kinetic Theory }}{\text { of Matter }}$

1. All matter is composed of small particles (atoms, molecules, or ions).
2. They are in constant, random motion.
3. These molecules constantly collide with each other and their surroundings.

Forces of Attraction

According to the kinetic theory of matter, the state (phase) of a substance is determined by the interplay of two opposing forces within a substance. Kinetic energy pulls particles apart while forces of attraction hold them together.

States of Matter

States of matter: solid, liquid and gas.
Whether a substance is a solid, liquid or gas depends on the kinetic energy (KE) and the atomic forces of attraction holding the particles together.

Solids

Low kinetic energy
Particles are close
Vibrate

Fixed shape

Liquids

Higher kinetic energy
Particles are farther apart
Collide and move around

Fixed volume not shape

Gases

High kinetic energy
Particles are far apart
No fixed shape or volume

Thermal Energy

The specific form of Kinetic Energy (KE) concerning Kinetic Theory of Matter is Thermal Energy E_{th}.

$$
\mathrm{E}_{\mathrm{th}}=\# \text { of particles } \times \mathrm{KE}
$$

Temperature

Definition: is a measure of the average kinetic energy of the particles of a substances.
Hot objects: higher ave KE, higher temperature
Cold objects: lower ave KE, lower temperature

Heat

Heat is the TRANSFER of thermal energy. Heat: $\mathrm{Q}=\Delta \mathrm{E}_{\mathrm{Th}}$

Summary

Thermal Energy $\left(\mathrm{E}_{\text {th }}\right) \neq$ Temperature \neq Heat

Summary

Thermal Energy ($\mathrm{E}_{\text {th }}$) \neq Temperature \neq Heat

Summary

Thermal Energy $\left(\mathrm{E}_{\text {th }}\right) \neq$ Temperature \neq Heat

Summary

Thermal Energy ($\mathrm{E}_{\text {th }}$) \neq Temperature \neq Heat】

Temperature Scales

Boiling Point of Water	373 K		$100^{\circ} \mathrm{C}$	
Freezing Point of Water		$212^{\circ} \mathrm{F}$		

Temperature Scales

$$
\begin{aligned}
& { }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) \times 5 / 9-\text { What is } 72^{\circ} \mathrm{F} ? \\
& \mathrm{~K}={ }^{\circ} \mathrm{C}+273-\text { What is } 100^{\circ} \mathrm{C} ? \\
& { }^{\circ} \mathrm{F}={ }^{\circ} \mathrm{C} \times 9 / 5+32-\text { What is } 0^{\circ} \mathrm{C} ?
\end{aligned}
$$

